

1. Material Variance Calculation

Solution:

- SQ (Standard Quantity) = $1000 \times 4 = 4000$ sq. ft
- SP = Rs. 5
- AQ = 4300 sq. ft
- AP = Rs. 5.50

Calculations:

- $MCV = (4000 \times 5) - (4300 \times 5.50) = 20,000 - 23,650 = -\text{Rs. 3,650}$ (Unfavorable)
- $MUV = (4000 - 4300) \times 5 = -300 \times 5 = -\text{Rs. 1,500}$ (Unfavorable)
- $MPV = (5 - 5.50) \times 4300 = -0.50 \times 4300 = -\text{Rs. 2,150}$ (Unfavorable)

2. Material Variance Calculation

Solution:

- $SQ = 100 \times 3 = 300$ lbs
- SP = Rs. 2
- AQ = 250 lbs
- AP = Rs. 5.50

Calculations:

- $MCV = (300 \times 2) - (250 \times 5.50) = 600 - 1375 = -\text{Rs. 775}$ (Unfavorable)
- $MUV = (300 - 250) \times 2 = 50 \times 2 = \text{Rs. 100}$ (Favorable)
- $MPV = (2 - 5.50) \times 250 = -3.50 \times 250 = -\text{Rs. 875}$ (Unfavorable)

3. Material Variance Calculation with Opening & Closing Stock

Solution:

- $SQ = 80 \times 25 = 2000$ units
- SP = Rs. 2
- AQ (Used) = $3000 - 500 = 2500$ units
- AP = $\text{Rs. 9000} / 3000 = \text{Rs. 3}$ per unit

Calculations:

- $MCV = (2000 \times 2) - (2500 \times 3) = 4000 - 7500 = -\text{Rs. 3,500}$ (Unfavorable)

- $MUV = (2000 - 2500) \times 2 = -500 \times 2 = -\text{Rs. 1,000}$ (Unfavorable)
- $MPV = (2 - 3) \times 2500 = -1 \times 2500 = -\text{Rs. 2,500}$ (Unfavorable)

4. Material Variance Calculation (Alternative Case)

Solution:

- $SQ = 1000 \times 1.5 = 1500$ sq. ft
- $SP = \text{Rs. 0.15}$
- $AQ = 1020 \times 1.3 = 1326$ sq. ft
- $AP = \text{Rs. 0.18}$

Calculations:

- $MCV = (1500 \times 0.15) - (1326 \times 0.18) = 225 - 238.68 = -\text{Rs. 13.68}$ (Unfavorable)
- $MUV = (1500 - 1326) \times 0.15 = 174 \times 0.15 = \text{Rs. 26.10}$ (Favorable)
- $MPV = (0.15 - 0.18) \times 1326 = -0.03 \times 1326 = -\text{Rs. 39.78}$ (Unfavorable)

5. Large-scale Material Variance Calculation

Solution:

- $SQ = 210,000 \times (100/70) = 300,000$ kg
- $SP = \text{Rs. 1}$
- $AQ = 280,000$ kg
- $AP = \text{Rs. } 252,000 / 280,000 = \text{Rs. 0.90}$ per kg

Calculations:

- $MCV = (300,000 \times 1) - (280,000 \times 0.90) = 300,000 - 252,000 = \text{Rs. 48,000}$ (Favorable)
- $MUV = (300,000 - 280,000) \times 1 = 20,000 \times 1 = \text{Rs. 20,000}$ (Favorable)
- $MPV = (1 - 0.90) \times 280,000 = 0.10 \times 280,000 = \text{Rs. 28,000}$ (Favorable)

6. Labour Variance Calculation

Solution:

- **Standard Hours (SH) = $1000 \times 2.5 = 2500$ hours**
- **Standard Rate (SR) = Rs. 2**
- **Actual Hours (AH) = 2000 hours**

- **Actual Rate (AR) = Rs. 4,500 / 2000 = Rs. 2.25**
- **Idle Time = $2000 \times 25\% = 500$ hours**

Calculations:

- **LCV = $(2500 \times 2) - (2000 \times 2.25) = 5000 - 4500 = \text{Rs. 500}$ (Favorable)**
- **LUV = $(2500 - 2000) \times 2 = 500 \times 2 = \text{Rs. 1000}$ (Favorable)**
- **LRV = $(2 - 2.25) \times 2000 = -0.25 \times 2000 = -\text{Rs. 500}$ (Unfavorable)**
- **ITV = $500 \times 2 = \text{Rs. 1000}$ (Favorable)**

7. Labour Variance Calculation (Alternative Case)

Solution:

- **SH = $700 \times 3 = 2100$ hours**
- **SR = **Rs. 6****
- **AH = **2000** hours**
- **AR = **Rs. 14,000 / 2000 = Rs. 7****
- **Idle Time = **50** hours**

Calculations:

- **LCV = $(2100 \times 6) - (2000 \times 7) = 12,600 - 14,000 = -\text{Rs. 1,400}$ (Unfavorable)**
- **LUV = $(2100 - 2000) \times 6 = 100 \times 6 = \text{Rs. 600}$ (Favorable)**
- **LRV = $(6 - 7) \times 2000 = -1 \times 2000 = -\text{Rs. 2,000}$ (Unfavorable)**
- **ITV = $50 \times 6 = \text{Rs. 300}$ (Unfavorable)**