Trendline and Regression Analysis (Part 1):

Simple Linear Regression

BM 4419

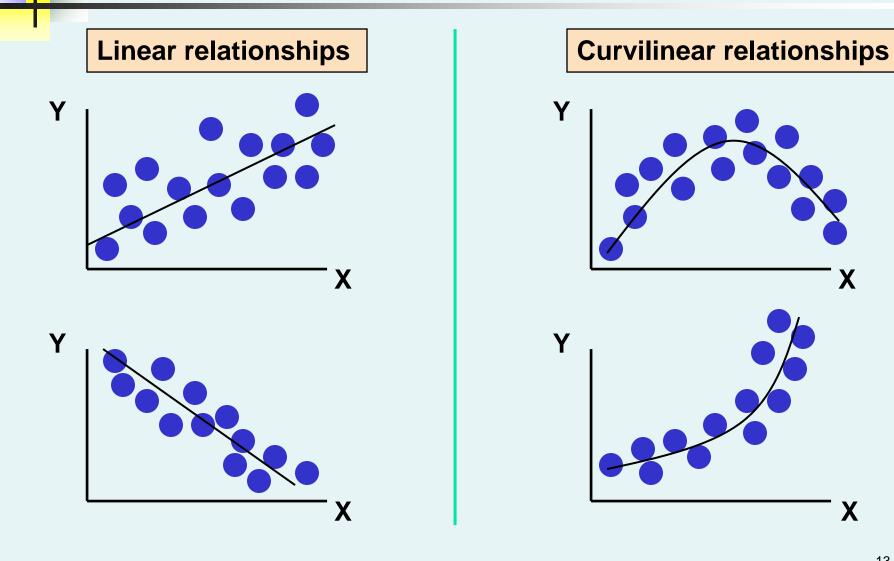
Business Analytics

Introduction to Regression Analysis

- Regression analysis is used to:
 - Predict the value of a dependent variable based on the value of at least one independent variable
 - Explain the impact of changes in an independent variable on the dependent variable
- Dependent variable: the variable we wish to predict or explain

Independent variable: the variable used to predict or explain the dependent variable

Simple Linear Regression Model

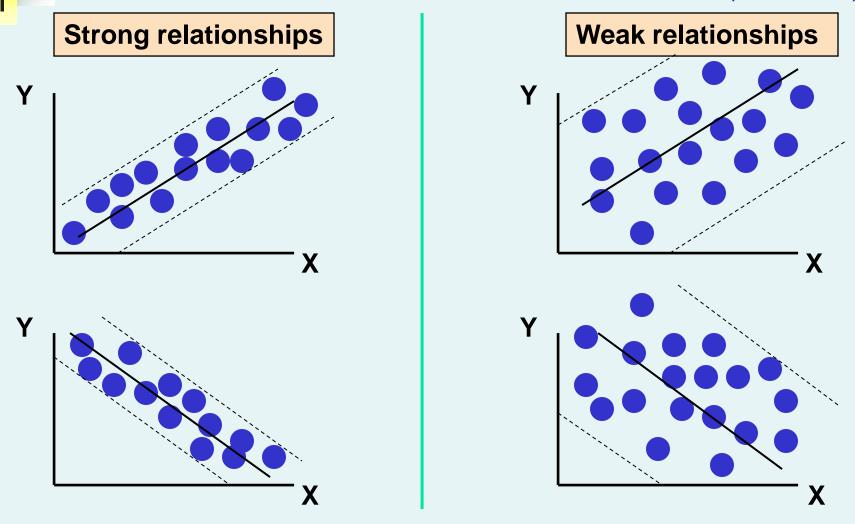


- Only one independent variable, X
- Relationship between X and Y is described by a linear function
- Changes in Y are assumed to be related to changes in X

Types of Relationships

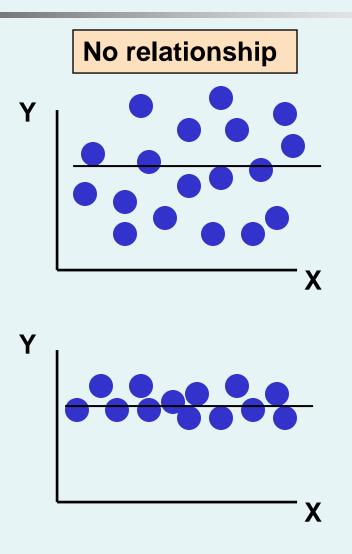
DCO<u>V</u>A

X

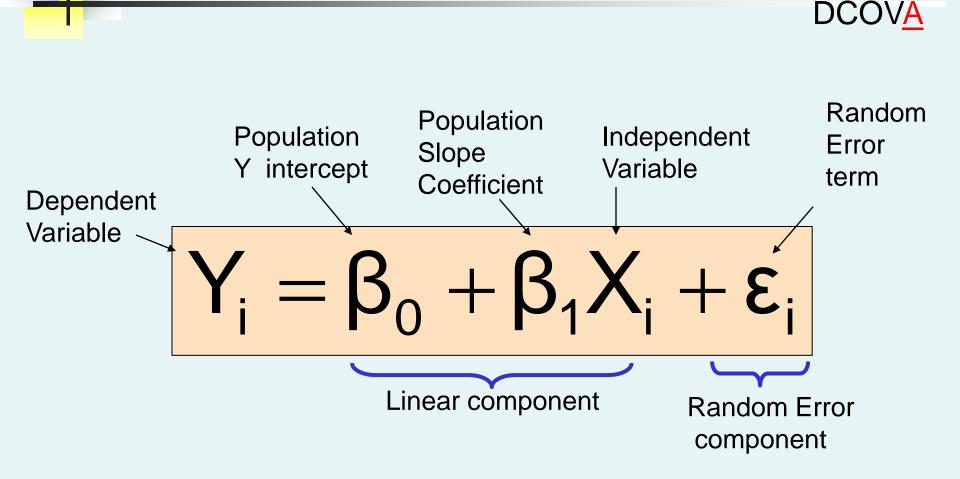


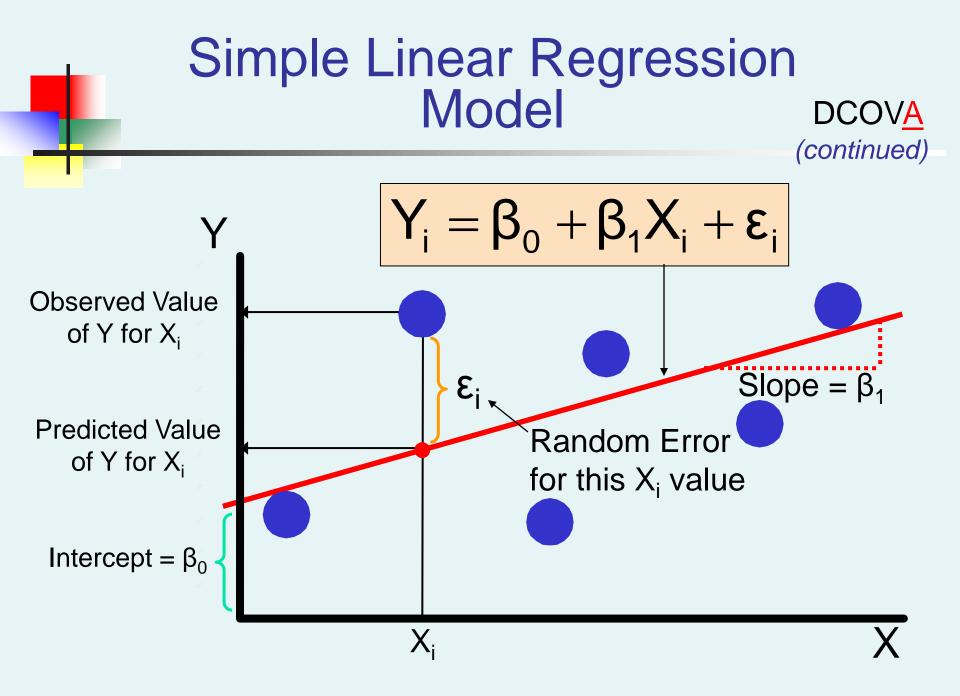
13-4

Χ

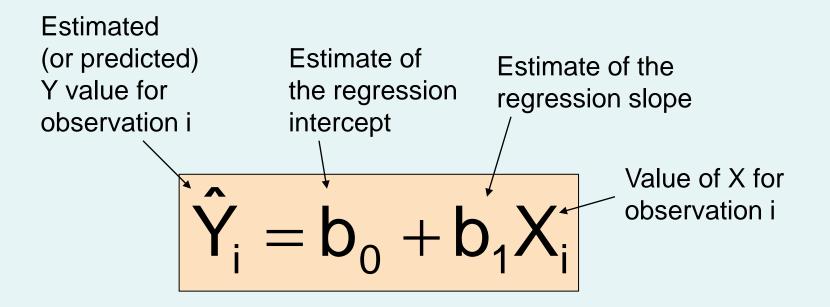

Types of Relationships

(continued)




Types of Relationships

DCO<u>V</u>A (continued)


Simple Linear Regression Model

Simple Linear Regression Equation (Prediction Line)

The simple linear regression equation provides an estimate of the population regression line

Interpretation of the Slope and the Intercept

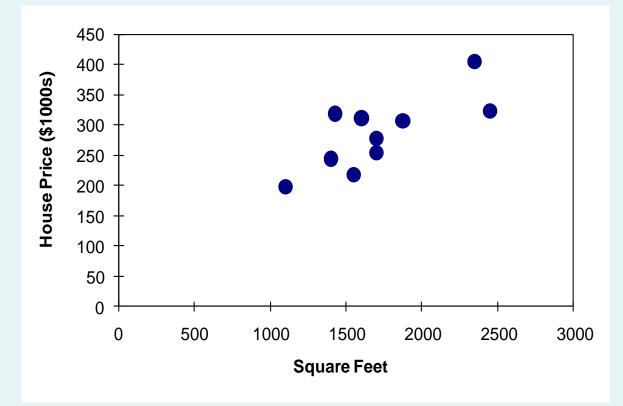
- b₀ is the estimated average value of Y when the value of X is zero
- b₁ is the estimated change in the average value of Y as a result of a one-unit increase in X

Simple Linear Regression Example

- A real estate agent wishes to examine the relationship between the selling price of a home and its size (measured in square feet)
- A random sample of 10 houses is selected
 - Dependent variable (Y) = house price in \$1000s
 - Independent variable (X) = square feet

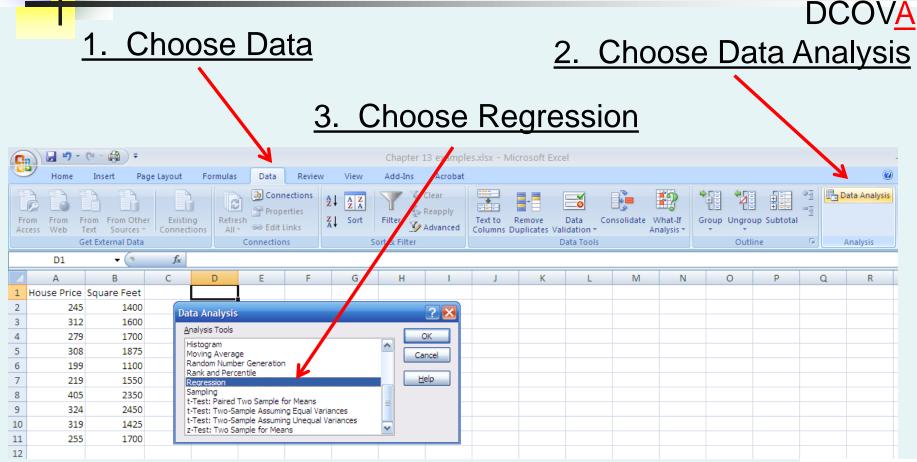
Simple Linear Regression Example: Data

House Price in \$1000s (Y)	Square Feet (X)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700



DC<mark>O</mark>VA

Simple Linear Regression Example: Scatter Plot


DCOVA

House price model: Scatter Plot

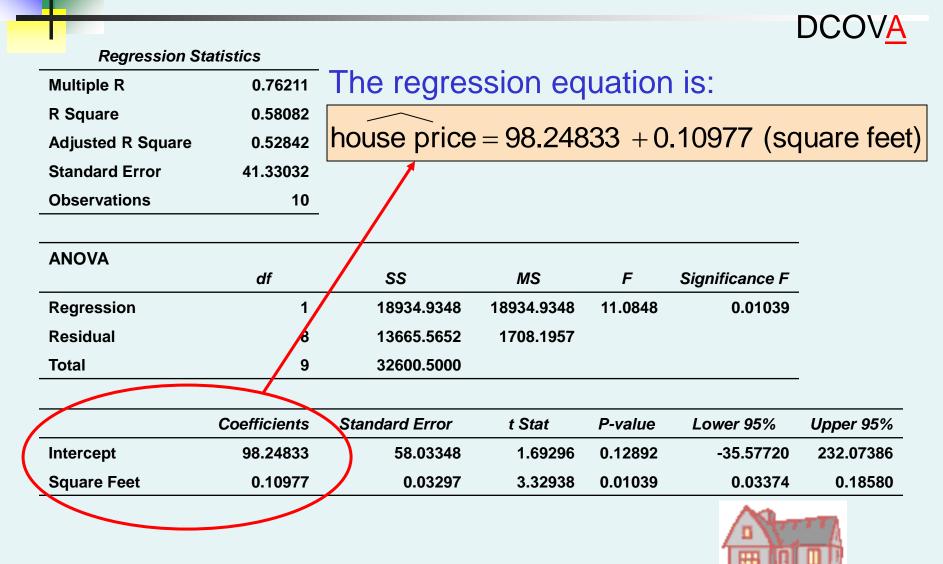
Simple Linear Regression Example: Using Excel Data Analysis Function

Simple Linear Regression Example: Using Excel Data Analysis Function

(continued)

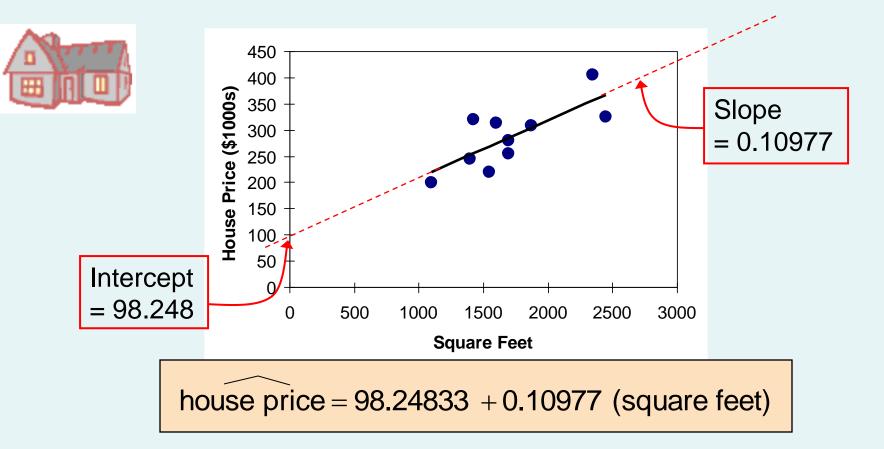
Enter Y's and X's and desired options

	А	В	С	D	E	F	G	Н	I.
1	House Price	Square Feet							
2	245	1400	R	egression					2 🔼
3	312	1600	é	Input					ОК
4	279	1700		Input <u>Y</u> Rang	e:	\$A\$2	\$A\$11	1	
5	308	1875		Input <u>X</u> Rang	e:	éBé?	\$B\$11	E	Cancel
6	199	1100				9092.	30311		Hala
7	219	1550		Labels		Constan	t is <u>Z</u> ero		<u>H</u> elp
8	405	2350		Con <u>f</u> iden	ce Level:	95 %			
9	324	2450		Output option:	-				
10	319	1425				\$D\$1		I	
11	255	1700		Output R	_	\$0\$1			
12				O New Worl					
13				O New Worl	kbook				
14				Residuals					
15				Residuals	ized Residuals		tesi <u>d</u> ual Plots ine Fit Plots		
16						,	incrititious		
17				Normal Proba					
18					obability Plot	S			
19									
20									


Simple Linear Regression Example: Using PHStat

Add-Ins: PHStat: Regression: Simple Linear Regression

Home	Insert	Page La	yout	Formulas	Data	Review	View	Add-Ins			D1	•	Jx					
PHStat -		-							Darderer Darderer Eigenriter Oter tester		А	В	С	D	E	F	G	
									One-game Annua Digentan Digentan	1 H	ouse Price	Square Feet	Simple	Linear Reg	ression			>
Data Prepar	ation		<u> </u>						Clanama	2	245	1400	— Data	a ———				
Descriptive	Statistics									3	312	1600		- ariable Cell R	ande:	Sheet1!\$A\$2	2:\$A\$11	
Decision-M	aking		۰ <u> </u>							4	279	1700		ariable Cell R	-	Sheet1!\$B\$2		-1
Probability	& Prob. Dist	ributions	<u>۲</u>						imple Examp	5	308	1875			-	es contain label		
Sampling				D	E	F	G	н	iStat: Re	6	199	1100			-	ssion coefficient		5 %
									-	7	219	1550			, ron rogro.			
Confidence	Intervals									8	405	2350		ression Tool				
Sample Size			<u>۲</u>							9	324	2450		Regression	Statistics T	able		
One-Sample	e Tests		۲ I						an ann Ingana. Nath Ingana. Filman.	10	319	1425		ANOVA and	Coefficien	ts Table		
Two-Sample	Tests									11	255	1700		Residuals Ta	able			
Multiple-Sa	mple Tests		, -							12				Residual Plo	t			
· · · ·			-							13				put Options				
Control Cha	irts								Linea	14			Title					
Regression				Simple Li	near Regress	ion			utput									
Utilities			•	Multiple	Regression				and T	16			_	Scatter Plot				
About PHSt	at		_	Best Sub	retr					17			_	Durbin-Wats				
-										18						tion Interval for		_
Help for PH	stat			Stepwise	Regression.				· - /	19				Confidence	level for in	nterval estimate	s:	%
										20			-			ОК	Car	ncel
									11.5 HE	21								icei



Simple Linear Regression Example: Excel Output

Simple Linear Regression Example: Graphical Representation

House price model: Scatter Plot and Prediction Line

Simple Linear Regression Example: Interpretation of b_o

house price = 98.24833 + 0.10977 (square feet)

- b₀ is the estimated average value of Y when the value of X is zero (if X = 0 is in the range of observed X values)
- Because a house cannot have a square footage of 0, b₀ has no practical application

Simple Linear Regression Example: Interpreting b₁

house price = 98.24833 + 0.10977 (square feet)

- b₁ estimates the change in the average value of Y as a result of a one-unit increase in X
 - Here, b₁ = 0.10977 tells us that the mean value of a house increases by .10977(\$1000) = \$109.77, on average, for each additional one square foot of size

Simple Linear Regression Example: Making Predictions

DCOVA

Predict the price for a house with 2000 square feet:

house price = 98.25 + 0.1098 (sq.ft.)

= 98.25 + 0.1098(2000)

= 317.85

The predicted price for a house with 2000 square feet is 317.85(\$1,000s) = \$317,850

Simple Linear Regression Example: Making Predictions

When using a regression model for prediction, only predict within the relevant range of data

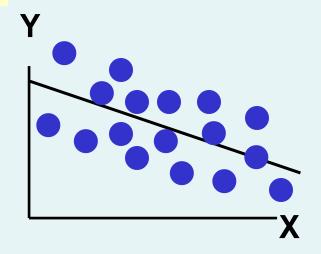
Relevant range for interpolation 450 400 House Price (\$1000s) 350 300 250 200 150 100 Do not try to 50 0 extrapolate 2500 500 1000 2000 3000 0 1500 beyond the range **Square Feet** of observed X's

Coefficient of Determination, r²

- The coefficient of determination is the portion of the total variation in the dependent variable that is explained by variation in the independent variable
- The coefficient of determination is also called r-squared and is denoted as r²

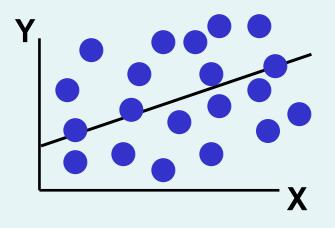
$$r^{2} = \frac{SSR}{SST} = \frac{\text{regression sum of squares}}{\text{total sum of squares}}$$

note:
$$0 \le r^2 \le 1$$


Examples of Approximate r² Values

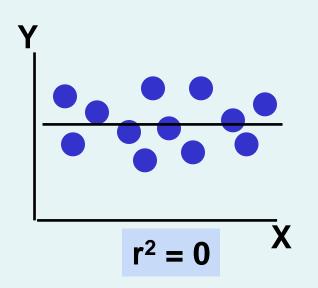
Χ $r^2 = 1$ Y Х

Perfect linear relationship between X and Y:


100% of the variation in Y is explained by variation in X

Examples of Approximate r² Values

$$0 < r^2 < 1$$


Weaker linear relationships between X and Y:

Some but not all of the variation in Y is explained by variation in X

Examples of Approximate r² Values

DCOVA

No linear relationship between X and Y:

The value of Y does not depend on X. (None of the variation in Y is explained by variation in X)

Simple Linear Regression Example: Coefficient of Determination, r² in Excel

_	Regression Stat	istics	r^2	$=\frac{SS}{SS}$	SR =	18934.9	$\frac{9348}{2} = 0.58$	082
	Multiple R	0.76211		S	ST	32600.		
<	R Square	0.58082	> 7	<u>ا</u>				
	Adjusted R Square	0.52842	/		58	3.08% c	of the variat	ion in
	Standard Error	41.33032			hou	ise pric	es is explai	ned by
_	Observations	10	variation in squa				-	-
					•	anatio		
	ANOVA	df	SS	I	ИS	F	Significance F	
Ī	Regression	1	▶ 18934.9348	1893	34.9348	11.0848	0.01039	
	Residual	8	13665.5652	170	08.1957			
	Total	9	→ 32600.5000					

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

EXAMPLE:

Eight students revealed the number of hours per day spent studying for the final exams and their relevant marks. These are tabulated in a table.

- Find the least square regression equation.
- Interpret the value of a and b.
- Predict the mark of final exam, if the student spent 9 hours and 15 minutes for studying.

Number of hours	2	6	8	1	10	7	6	3
Marks	40	50	80	20	60	80	90	40

SOLUTION:

$$b = \frac{ss_{xy}}{ss_{xx}} = 5.7090$$
$$a = \bar{y} - b\bar{x} = \frac{\sum y}{n} - b\frac{\sum x}{n} = 26.81$$

 $\hat{y} = 26.81 + 5.7090x$